Source code for modeling.sampling

"""
The module sampling.py contains classes for sampling and ranking points from Keyframe models.
"""
import numpy as np
import rospy


[docs]class KeyframeSampler(): """ Sampling class that uses model representing a keyframe to sample points. Attributes ---------- analyzer : object Analysis object that evaluates sampled points for their validity (constraint satisfcation). data_converter : func Function to convert a raw sample into an Observation object for use by the analyzer. """ def __init__(self, analyzer, data_converter): """ Parameters ---------- analyzer : ConstraintAnalyzer Evaluates sampled points for their validity (constraint satisfcation). data_converter : func Function to convert a raw sample into an Observation object for use by the analyzer. """ self.analyzer = analyzer self.converter = data_converter
[docs] def generate_raw_samples(self, model, num_of_samples): """ Parameters ---------- model : object Model object used to generate raw samples. num_of_samples : int Number of samples to generate. Returns ------- raw_samples : list List of raw samples generated from the model. """ raw_samples = model.generate_samples(num_of_samples) return raw_samples
[docs] def generate_n_valid_samples(self, model, constraint_ids, n=100): """ Parameters ---------- model : object Model object used to generate raw samples. constraint_ids : list List of constraint IDs required for validity. n : int Number of valid samples to generate. Returns ------- raw_samples : list List of valid raw samples generated from the model. """ valid_samples = [] attempts = 0 while len(valid_samples) < n: attempts += 1 if attempts >= n * 20: break samples = self.generate_raw_samples(model, 1) if len(samples) > 0: sample = samples[0] observation = self.converter.convert(sample, run_fk=True) matched_ids = self.analyzer.evaluate(constraint_ids, observation) # print(constraint_ids, matched_ids) if constraint_ids == matched_ids: valid_samples.append(sample) return attempts, valid_samples
[docs] def rank_samples(self, model, samples): """ Parameters ---------- model : object Model object used to generate raw samples. samples : list List of samples to rank according to their score as measured by the model. Returns ------- rank_sorted_sampled : list List of rank (according to model scoring function) sorted samples (descending order). """ if len(samples) == 0: rospy.logwarn("No samples to rank.") return [] array = [] for sample in samples: array.append(sample) np_array = np.array(array) scores = model.score_samples(np_array) order = np.argsort(-scores) scores = scores[order] rank_sorted_sampled = np.asarray(samples) return rank_sorted_sampled