Source code for modeling.visualization

"""
The visualization.py module constains classes for viewing sample poitns and models used in Cairo LfD.
"""
import matplotlib as mpl
from matplotlib import pyplot as plt
from matplotlib.colors import colorConverter
from mpl_toolkits.mplot3d import Axes3D
import randomcolor
import numpy as np


[docs]class SamplePointViewer: """ Class for viewing samples points via Matplotlib's pyplot. """
[docs] def view_3D_scatter(self, sample_points, x_index, y_index, z_index): """ Generates 3D graph according of the passed in sample points. Parameters ---------- sample_points : list List of numpy arrays (usually observations) x_index : int Index of sample point to represent the x-axis value. y_index : int Index of sample point to represent the y-axis value. z_index : int Index of sample point to represent the z-axis value. """ fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.autoscale_view() ax.scatter(sample_points[:, x_index], sample_points[:, y_index], sample_points[:, z_index]) plt.show()
[docs]class KMeansModelViewer: """ Class for viewing observation vector representation with KMeansModel. Attributes ---------- kmm : KMeansModel Model to visualize. observation_vectors : list List of vectorized Observations. """ def __init__(self, kmm, observation_vectors): """ Parameters ---------- kmm : KMeansModel Model to visualize. observation_vectors : list List of vectorized Observations. """ self.kmm = kmm self.observation_vectors = observation_vectors
[docs] def view_3D_clusters(self, x_index, y_index, z_index): """ Generates 3D graph of the clusters of KMeans model Parameters ---------- x_index : int Index of sample point to represent the x-axis value. y_index : int Index of sample point to represent the y-axis value. z_index : int Index of sample point to represent the z-axis value. """ labels = self.kmm.model.labels_ centroids = self.kmm.model.cluster_centers_ rand_color = randomcolor.RandomColor() colors = [colorConverter.to_rgb(rand_color.generate()[0]) for n in enumerate(range(0, self.kmm.n_clusters))] fig = plt.figure(figsize=(10, 10)) ax = Axes3D(fig) ax.autoscale_view() X = self.observation_vectors for n, color in enumerate(colors): data = X[np.where(labels == n)] ax.scatter(data[:, x_index], data[:, y_index], data[:, z_index], color=color) ax.scatter(centroids[:, x_index], centroids[:, y_index], centroids[:, z_index], marker="x", s=150, linewidths=5, zorder=100) ax.autoscale(enable=False, axis='both') plt.show()
[docs]class GaussianMixtureModelViewer: """ Class for viewing observation vector representaions within Gaussian Mixture Model. Attributes ---------- kmm : KMeansModel Model to visualize. observation_vectors : list List of vectorized Observations. """ def __init__(self, gmm, observation_vectors): """ Parameters ---------- gmm : GaussianMixtureModel Model to visualize. observation_vectors : list List of vectorized Observations. """ self.gmm = gmm self.observation_vectors = observation_vectors
[docs] def view_2D_gaussians(self, x_index, y_index): """ Generates 2D graph of distribution components of the of Gaussian Mixture model. Parameters ---------- x_index : int Index of sample point to represent the x-axis value. y_index : int Index of sample point to represent the y-axis value. """ rand_color = randomcolor.RandomColor() colors = [colorConverter.to_rgb(rand_color.generate()[0]) for n in enumerate(range(0, self.gmm.n_components))] fig = plt.figure(figsize=(10, 10)) ax = plt.subplot(111) X = self.observation_vectors labels = self.gmm.model.predict(self.observation_vectors) self.__make_ellipses(self.gmm.model, ax, colors) for n, color in enumerate(colors): data = X[np.where(labels == n)] plt.scatter(data[:, x_index], data[:, y_index], s=0.8, color=color) plt.xticks(()) plt.yticks(()) plt.show()
def __make_ellipses(self, gmm, ax, colors): """ Generates and adds to the passed ax object ellipse figures.These ellipses represent component Gaussian distributions of the mixture model. Parameters ---------- gmm : modeling.GaussianMixtureModel The gaussian mixture model for which to generate ellipses. ax : matplotlib.axes.Axes Subplot axes to which the ellipses are added. colors : list List of randomly generated colors used to differentiate the component distributions. """ for n, color in enumerate(colors): if gmm.covariance_type == 'full': covariances = gmm.covariances_[n][:2, :2] elif gmm.covariance_type == 'tied': covariances = gmm.covariances_[:2, :2] elif gmm.covariance_type == 'diag': covariances = np.diag(gmm.covariances_[n][:2]) elif gmm.covariance_type == 'spherical': covariances = np.eye(gmm.means_.shape[1]) * gmm.covariances_[n] v, w = np.linalg.eigh(covariances) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v = 2. * np.sqrt(2.) * np.sqrt(v) ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1], 180 + angle, color=color) ell.set_clip_box(ax.bbox) ell.set_alpha(0.5) ax.add_patch(ell)